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ABSTRACT 
 
It is widely understood that energy storage is the key to 
integrating variable generators into the grid.  It has been 
proposed that the thermal mass of buildings could be used as a 
distributed energy storage solution and several researchers are 
making headway in this problem.  However, the inability to 
easily determine the magnitude of the building’s effective 
thermal mass, and how the heating ventilation and air 
conditioning (HVAC) system exchanges thermal energy with it, 
is a significant challenge to designing systems which utilize this 
storage mechanism.  In this paper we adapt modal analysis 
methods used in mechanical structures to identify the primary 
modes of energy transfer among thermal masses in a building.  
The paper describes the technique using data from an idealized 
building model.  The approach is successfully applied to actual 
temperature data from a commercial building in downtown 
Boise, Idaho. 

 
INTRODUCTION 
  
 Modeling building energy use has a long history in 
architecture and engineering.  These modeling efforts can be 
viewed along a spectrum which is anchored on one end by first-
principle, ground-up models (such as those implemented in 
EnergyPlus,(EERE 2012)).  On the other end of the spectrum 
are so-called “black box” models which use actual building 
energy consumption data to derive correlations with exogenous 

factors like daily temperature, sunshine and occupancy (Ahmad 
and Culp 2006; Wijayasekara, Manic et al. 2012).  Modeling 
activity on both ends of the spectrum has increased dramatically 
in recent years. Building designers, motivated by client 
demands and third party certifications (such as Leadership in 
Energy and Environmental Design (LEED)) are increasingly 
using first principle building energy models as part of the 
building design process.  These models are valuable tools in 
assessing various energy savings options, comparing initial cost 
with likely energy savings and computing the cost-effectiveness 
of each choice.  These models, however, have little utility in 
understanding the operation of the building after it is built.   

On the other end of the spectrum, the proliferation of smart 
meters and network-enabled sub-meters has made available an 
unprecedented amount of data which can be used to develop 
increasingly complex and detailed black box models. 

Between the two extremes one can find a series of 
approaches that begin with some physics-based model of energy 
storage (thermal mass) and resistance to heat flow (insulation) 
and perhaps mass transfer, coupled with a parameter 
identification technique that utilizes energy consumption data to 
fit parameter values to the physics models. This family of 
approaches is often described as “gray box” models. 

A closely related field is the application of system 
identification methods to find values of model parameters for 
building energy use models (Ljung 1997).  These approaches 
are important for models which have some basis of physics in 
the modeling approach(Mejri, Barrio et al. 2011). 
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A detailed survey of black box modeling methods, and their 
relative effectiveness in predicting energy use from a real data 
set can be found in (Kreider and Haberl 1994).  This paper 
presents the results of an open competition to find the best 
methods in utilizing building energy data to develop a 
predictive building energy use model. The methodologies that 
were used include nonlinear statistical models, various Artificial 
Neural Network topologies and piecewise linear regressions. 
Prediction methods were judged by two statistical measures, a 
coefficient of variation (a root mean square error) and mean 
bias error. These measures were applied to each sub-set of 
building energy measure (electric, chilled water, hot water) and 
to overall energy consumption. While the various methods each 
had their strengths, none was considered uniformly superior for 
all indices of performance. 

The term “modal analysis” refers to a set of linear algebra-
based tools that can be used to model, visualize and understand 
the vibrational behavior of complex mechanical structures.  
Using eigenvalues and eigenvectors of a system of differential 
equations, engineers can identify the frequencies at which a 
structure vibrates and the relative displacements, or shapes, of 
the structure as it vibrates at each frequency.  These tools are 
particularly powerful in the context of laboratory or in-field 
testing of existing structures.  In particular, modal analysis 
offers a means of finding a relatively low-order dynamic model 
of highly complex systems. 

METHODOLOGY 
The central theme in gray box modeling is finding the best 

model structure for a given application. Typically a good model 
structure is one that is complex enough to capture significant 
dynamic behavior, but no more complex than is required to 
explain the relevant system behavior.  The simplest such model 
for building energy consumption is described in (Rabl 1988) as 
a 1R1C network, in essence, a single lumped thermal mass 
surrounded by a thermal resistance (i.e. insulation).  Equation 1 
is the differential equation for such a model. 

)( TTKTC TK T     (1) 

Where C is the thermal capacitance (i.e. thermal mass) at 
temperature T, K is the thermal conductance (reciprocal of 
resistance) of the insulating envelope and T∞ is the 
environmental temperature. 

Clearly, a model of this level of simplicity, ignoring 
temperature variations throughout the structure, air exchanges, 
HVAC energy additions & removals and internal loads, just to 
name a few, is of limited utility. However, it is possible to 
extract useful information from even this limited approach. 

Extending this model to one in which there are several 
thermal masses exchanging heat with the environment and each 
other, through different thermal transmittances, we have a more 
general and N-dimensional model. 
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Which can be represented in matrix form as shown 

 
UTT HKC HK    (3) 

 
Where C is a diagonal, positive definite matrix of the 

thermal masses, K is a symmetric matrix of thermal 
conductances, U is the vector of inputs, and H is an input 
matrix. 

Since C is positive definite (and is hence invertible), the 
state-space form of equation (2) is easily shown to be 

 
UTT HCKC 11 H1K1 CC   (4) 

 
In the special case where the observed temperatures are 

also the system states, then the output equation is trivial. But 
that is rarely the case, and in actual applications, the 
relationship between the observed temperatures and the system 
states is unknown. Indeed, this relationship lies at the heart of 
the system identification process. 

In more general form, the dynamics are determined by the 
states of the system given by the vector Q in equation (5). 
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Where Q is the N-dimensional state vector, T is the L-

dimensional output vector which corresponds to the measured, 
or observed temperatures and U is the M-dimensional input 
vector.   D is the “direct transmission” matrix, typically zero but 
included here for the sake of completeness. 

The eigenvalues and eigenvectors of the system matrix, A, 
allow for a transformation of (5) into a diagonalized (or de-
coupled) set of equations. 
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And P is the orthonormal matrix made up of the 
eigenvectors of the system matrix A (arranged in columns). The 
eigenvalues in E are reciprocals of time constants that describe 
the response of the system (Rabl 1988; Lefebvre 1997; 
Matiasovsky 2006). 

The form of the dynamic equations shown in (6) is known 
as the modal form.  As is the case with structural modal 
analysis, model reduction can often be realized by considering 
only the slowest modes, as the majority of any dynamic 
response can be described by a subset of the entire system. 

Therefore, the method required to carry out an analysis of a 
system can be described in the steps below: 

 
1) Given a set of L temperatures sampled over a period of 

time, and a set of M input variables sampled over the 
same period 

2) Use system identification methods to identify a state 
space model of the form shown in equation (5) that 
captures the dynamic relationship between the inputs 
and observations to an adequate level.  This step can 
be iterated to find the minimum order of model that 
adequately describes the system behavior. 

3) Put the system into modal form as seen in equation (6) 
4) Interpret system behavior by examining the 

eigenvectors and eigenvalues. 
 
 
If the system under study is a passive system such as the 

one described in equation (1), all the eigenvalues of the system 
will be real and no oscillatory behavior is possible. However, if 
the process is applied to a building with active HVAC control 
(where oscillatory behavior is common), then the process will 
likely identify one or more modes that are complex and the 
eigenvalues will appear as complex conjugate pairs, which 
represent the frequency of oscillation. 

APPLICATION OF METHOD: SYNTHETIC DATA 
 

To demonstrate the process, a simple model is 
constructed and used to generate synthetic temperature readings 
through simulation. Those readings are then treated like 
measured data to derive the various eigenvalues and 
eigenvectors (time constants and mode shapes) as described 
above. Since we are starting with an analytical model with 
known parameter values, we can compare the results of the 
modal modeling process with the correct answers to ensure that 
the process is internally consistent. 

Figure 1 shows an idealized building model consisting 
of 9 adjacent, but insulated spaces, each space is a thermal 
mass, each adjacency has a thermal resistance.  The outside of 
the square is at ambient temperature.   

 

Zone 1
Mass 1

Zone 2
Mass 2

Zone 3
Mass 3

Zone 6
Mass 6

Zone 5
Mass 5

Zone 4
Mass 4

Zone 9
Mass 9

Zone 8
Mass 8

Zone 7
Mass 7

Ro

Ro

Ro

Ro

R1 R2

R3 R4

R5 R6

R7 R8 R9

R10 R11 R12

RoRo

Ro Ro

Ro
Ro

Ro
Ro

 
 
Figure 1: Schematic representation of the nine thermal 
mass model used to demonstrate the method 

 
To utilize the 9 zone model described above generic 

values for R0 to R12 and M1 to M9 were arbitrarily chosen and 
the inputs to the model were taken to be the outside temperature 
data (taken from actual weather data) and estimated occupancy 
schedule.  The actual eigenvalues and mode shapes are derived 
using analytical and numerical means. These values could then 
be compared to the estimated time constants and mode shapes 
that were derived using the functions built into MATLAB® 
system identification toolbox to estimate State Space models. 
 
Table 1: Parameter values used to generate synthetic data in 9-

zone model 
R1 12  M1 16 
R2 9  M2 11 
R3 20  M3 18 
R4 6  M4 92 
R5 5  M5 6 
R6 17  M6 28 
R7 9  M7 79 
R8 4  M8 29 
R9 5  M9 27 

R10 91    
R11 12    
R12 9    
R0 30    

 
Two inputs drive this system. One is the outside temperature 
which is taken from actual weather observations.  The other is a 
binary function which corresponds to the “occupied” state of 
the building.  For the purposes of this example, it serves as the 
proxy of the building HVAC system and is seen by the system 
as a heat source for the thermal masses.  Figure 2 shows the 
time history of the two input functions which will be used for 
this demonstration. 
 



 

 4  

 
Figure 2:  Inputs to 9 zone model are external temperature and 

an occupancy marker (value of 1 between 8am and 5pm). 
 

Applying a simple energy balance to each thermal mass 
results in 9 first order differential equations that can be put in 
the form of equation (5) and diagonalized to the modal form 
(6).  Table 2 shows the time constants (reciprocals of the 
eigenvalues) and the eigenvectors for each time constant.   
 
 
Table 2: Time constants and eigenvectors for the 9-zone model 

Modes 1 2 3 4 5 6 7 8 9 

Time Constant (Min) 0.15 0.49 0.63 1.14 1.21 1.88 21.35 10.43 4.63 

     Modal Shapes    

Zone 1 -0.02 0.21 0.11 -0.57 -0.85 0.26 0.33 0.35 0.05 
Zone 2 0.33 -0.78 -0.24 -0.03 -0.20 0.36 0.29 0.08 0.29 
Zone 3 -0.03 0.27 -0.72 0.04 0.22 0.49 0.27 0.01 0.47 

Zone 4 0.01 0.00 -0.01 0.05 0.09 -0.07 0.43 0.58 -0.14 

Zone 5 -0.94 -0.51 0.11 0.14 -0.08 0.25 0.31 0.03 0.29 

Zone 6 0.06 0.08 0.61 0.03 0.22 0.25 0.28 -0.02 0.49 
Zone 7 0.00 -0.01 0.00 -0.17 0.08 0.04 0.42 -0.60 -0.21 

Zone 8 0.03 0.07 0.00 0.75 -0.35 -0.08 0.36 -0.38 0.05 
Zone 9 0.00 -0.02 -0.13 -0.25 -0.02 -0.65 0.29 -0.16 0.54 

 
 
It is instructive to take a moment to consider the implications of 
the values and vectors in Table 2.  The first column describes a 
mode of the system where the time constant (in minutes) 
describes how fast the temperature changes. For example, a 
system with at time constant of 1 minute subjected to step 
change if its input will be settle to within 5% of its new 
temperature within 3 minutes (and less than 1% in 5 minutes). 
The column shows us how the various zones participate in this 
mode.  For the mode in column 1, we can see that zone 5 
dominates this mode with the largest absolute value. Second 
most import zone is 2. All the others zones have very small 

contributions. Note also that the signs of the two largest 
contributions are opposite. We interpret this by noting that there 
is a mechanism of heat transfer that affects zones 2 and 5 in 
such a way that the fundamental dynamics have a time constant 
of 0.15 minutes and that the temperature fluctuations described 
by this mode are in the opposite directions (i.e. one is warming 
while the other is cooling).  

Note that each zone participates in each mode, so the 
actual temperature record is a linear combination of the various 
mode responses. 

In structural systems, mode shapes (eigenvectors) are 
often visualized by imposing color on an image of the structure 
where the color value indicates the value of that particular 
element in the eigenvector.  For this example, we arbitrarily 
choose red for positive values and blue for negative (there is no 
significance to the sign, only relative to the other elements). The 
intensity of the color is an indication of where the absolute 
value of the element lies. Paler colors close to 0, brightest close 
to 1. 

Figure 3 shows the graphical representative of the 7th 
mode of this model. 
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Figure 3:   Seventh mode shape for the 9 mass model (time 

constant = 21.34 min) 
 
Note that this mode is the slowest of the modes and shows a 
relatively uniform response of the masses. The likely 
interpretation is that this shows the distribution of the thermal 
energy after all other transients have settled out. 

Figure 4 shows the graphical representation of the next 
slowest mode, showing a much more complex behavior. 
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Figure 4:  The 8th mode of the 9 mass model at a time constant 

of 10.43 min. 
 
To verify the utility of this method in identifying the parameters 
from measured data, the differential equations for the nine mass 
model were numerically solved (using Simulink) with the 
signals shown in Figure 2 as the driving inputs. The simulation 
generated temperature records of the nine zones which can then 
be used as input to the system identification process. 
Figure 5 shows the time record that results from the simulation. 
 

 
Figure 5:  The temperature of each zone of the 9 mass model, 

corresponding to the inputs from Figure 2. 
 
Using the MATLAB System Identification Toolbox, a variety of 
models of any order can be fit to the data.  In particular, we 
focus on state space models of the form seen in equation (5). 
The advantage of this approach is that it becomes very easy to 
explore the accuracy of reduced order models. 
 

Figure 7 is a screen shot of the SI toolbox comparing the fit for 
models of order 1, 2, 3, 8 and 9.  Note that while the first order 
model is (understandably) a poor fit, all the other models 
provide reasonable approximations.  
 

 
Figure 6:  System Identification GUI showing the fit between 

model orders 1, 2, 3, 8, 9, the original model to the actual data 
derived from Simulink on Zone 8.  Note that model order 1 is a 
poor fit, but model order 2 is greatly improved.  It can also be 
seen that model orders 8, 9, and the original model fit the data 

nearly perfectly. 
 
          
To explore how effective this approach was in identifying the 
modes of the original model, we generated the color plots for a 
few modes and compare them to the plots generated from the 
original model. Figure 7 shows the two plots for the 9th mode 
(time constant 4.63 minutes).   As one might expect, the system 
identification approach, using a full-order model with perfect 
data, was able to back out the correct answer. 
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Figure 7:  Modal shapes of the original model and the 9th order 
estimated model.  The 9th order estimated model directly relates 

to the original model (down to the 4th decimal point). 
 
Figure 8 shows the results of a reduced order model (7th order) 
in identifying the second mode in Table 2 (time constant 0.49 
minutes) to a high degree of accuracy. 
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Figure 8:  Modal shapes of the original model and the 7th order 

estimated model 
 

APPLICATION TO ACTUAL BUILDING DATA 
 
The technique can be demonstrated with actual data as 

well.  For this purpose, the time history of building zone 
temperatures were obtained by querying the building energy 
control system and transferring them to a database where they 
can be manipulated. 

The candidate building is multi-floor office building in 
downtown Boise, Idaho. The data were supplied for two floors 
(floors 5 and 7) as seen in Figure 9.  The length of monitoring 
time was a 1 month period (September 2011).  The data 
supplied contained temperatures for each zone on the two 
floors, as well as outside temperature. For the purposes of 
system identification, the input data were taken to be the outside 
temperature and an occupancy signal that corresponded to 8 
AM to 5 PM on weekdays.  This is the same input data used in 
the demonstration in the previous section (Figure 2). 
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Figure 9:  Floorplan of Floors 5 and 7.  There are 38 zones on 
floor 5 and 15 zones on floor 7. The building is oriented nearly 
45° from the compass points, with the upper-right corner facing 

approximately south 
 
7th Floor 
 

By utilizing the system identification toolbox and the 
techniques described for the 9 mass system model, state space 
estimations were identified.  This was performed using different 

model orders to estimate the fit.  In establishing the best model 
for the 7th floor, decreasing orders of fit were attempted.  It was 
noted that model fidelity was not dramatically impacted until 
the model order was reduced to 5th order.  Therefore, a 6th order 
model was chosen to represent the data set with 15 individual 
temperature readings. 

Figure 10 shows a screen shot of the toolbox for a 
week-long period of data and several models that were 
computed. 
 

 
Figure 10:  Different order models fit to Floor 7 – Zone 2 of the 

office building.  This is a fairly good fit for this data. 
 
 

 Once a reasonably suitable state space model is 
identified (of the form given in equation (5)), the eigenvalues 
and eigenvectors of the system matrix (A) can be found.  As 
discussed earlier, it is likely that an analysis like this, where no 
attempt is made to tease out the HVAC control system behavior 
from the passive thermal behavior of the building structure, 
complex eigenvalues are likely to be observed.  This correlates 
to a mode shape that is oscillatory and not simply decaying with 
time.  These values appear as complex conjugate pairs. 

Finally, we note that the System Identification Toolbox 
allows the option of fitting a diagonal state space model. In 
essence, it chooses states that are already the modes of the 
system, and a system matrix that is already diagonalized. 

Figure 11 shows the readout of the 6th order model 
that was derived from the 15 temperature readings from the 7th 
floor of the building.   
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Figure 11: A 6th order model of the 7th floor of the office 

building. 
 
 

Note that the system matrix is not entirely diagonal, 
the 2nd and 3rd columns and rows each have one off-diagonal 
entry. This is how complex eigenvalues arise in this technique. 
One additional step is required to resolve that particular mode 
to the special case where the mode represented is oscillatory. 
Figure 12 shows the eigenvalues properly transformed showing 
the complex conjugate pair.  These can be interpreted as a 
complex conjugate pole where their magnitudes correspond to 
the natural frequency and their imaginary part correspond to the 
actual frequency of oscillation. 

 

 
Figure 12:  The eigenvalues of the 6th order model above.   

 
Due to the existence of the oscillatory mode there are 5 unique 
mode shapes for the 6th order model. Figures 13 through 17 
show graphical representation of the mode shapes using the 
same methodology demonstrated in the previous section. 
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Figure 13:  Modes shape associated with the smallest 

eigenvalue, 7th floor model 
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Figure 14:  Mode shape associated with a time constant of 

12.39 hours, 7th floor model 
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Figure 15:  Mode shape associated with a time constant of 5.79 

hours, 7th floor model 
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Figure 16:  Mode shape with a time constant of 4.47 hours, 7th 

floor model 
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Figure 17:  Mode shape of the oscillatory response, period of 

oscillation, 1.97 days, 7th floor model 
 
 
Interpretation of Mode Shapes 
 
Modal analysis is often referred to as a decomposition method. 
In other words, the actual response of the system is a linear 
combination of the modal responses. This is the basis for 
interpreting the mode shapes and time constants.  Examining 
the time constants, we divide the modes into three different 
domains: steady state, daily and hourly time scales. 
 
The eigenvalues associated with the mode in Figure 13 is 
essentially zero (4 orders of magnitude smaller than the other 
eigenvalues). This corresponds to the “rigid body mode” that 
arises in structural modal analysis.  The simplest interpretation 
is that this is the relative temperature distribution if the system 
were left undisturbed for a long period of time. We refer to this 
as the “steady state mode”. Note that the mode shape in Figure 

13 implies that the temperatures will equilibrate over time, 
which is an intuitively pleasing result. 
 
Figure 14 shows a mode shape with an associated time constant 
that is 12.39 hours.  This corresponds to a 5% settling time (3 
time constants) of approximately 36 hours. It’s not clear where 
these dynamics are arising, but it’s interesting to note that one 
zone (zone 1) appears with an opposing sign. In other words, as 
the rest of the system warms up with these dynamics, zone 1 
cools down (or vice versa).  Also note that color intensity 
implies the relative participation of that zone in the mode. It 
appears that this mode almost exclusively involves zone 1 with 
secondary participation with zones 2 and 5 (acting in opposite 
signs). 
 
Figures 15 and 16 are intra-day modes with time constants of 
5.79 and 4.47 hours, respectively. Clearly these are the main 
modes that describe the actions of the system throughout the 
day.  Figure 15 shows a response dominated by zones 2, 4 and 5  
and an out-of phase participation with zones 1 and 6.  By 
contrast, Figure 16 shows much broader participation by all 
zones, yet zone 6 is the dominant participant. 
 
Finally Figure 17 shows a mode shape associated with the 
oscillatory mode. The period of oscillation is approximately 2 
days with the corner of zone 5 (South corner of the building) 
being out of phase with the North corner (zone 11). 
 
Implications for thermal energy storage 
 

There is an important and critical trade-off in the 
discussion of thermal energy storage in buildings.  On one hand, 
to make the process as useful as possible to utilities, the storage 
mechanism should respond quickly to outside signals. In other 
words, if a wind farm suddenly stops producing because of a 
lull in the wind, it would be good for buildings to coast their 
HVAC systems immediately to a lower demand on the grid 
while the utilities are bringing other generation resources on 
line.  On the other hand, longer time constants imply larger 
thermal mass which means more energy storage with smaller 
changes in temperature.   

The steady state mode (Figure 13) encompasses the 
entire thermal mass of the building, but it’s long (approaching 
infinity) time constant implies that this mode does not represent 
a good mechanism for controllable energy storage.  Of the 
modes discovered in this example, the intra-day modes (figures 
15 and 16) seem to offer the most potential for controllable or 
dispatchable energy storage.  Figure 15 in particular, with broad 
participation, implying that a change in stored thermal energy 
would affect most zones in a similar manner, and relative short 
time constant, shows high promise for thermal energy storage 
on reasonable time scales.   
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5th Floor 
 
In the previous section, we saw how a 6th order model 

was used to decompose the response that was described by 15 
temperature points.  The 5th floor of the building is 
characterized by far more walled offices around the perimeter 
and far more individual temperature measuring points at 38. 

Using the same process outlined in previous sections, 
it was found that a 5th order state space model adequately 
describes the observed behavior of the system and this results in 
3 real eigenvalues and one complex conjugate pair.  Figures 18-
21 show the mode shapes of these responses. 
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Figure 18:  Steady state mode shape for the 5th order model of 

the 5th floor. 
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Figure 19:  Mode shape associated with a time constant of 5.29 

hours (5th order model – Floor 5) 
 
Figure 18 shows the steady state, uniform response, as we saw 
in the previous section.  Figure 19 shows an interesting pattern 
in which most of the measured zones appear to participate and 

two regions are out of phase with the rest of the building. The 
time constant (5.29 hours) suggests that it represents an 
important part of how the HVAC system works throughout the 
day.  Also note that the blue-colored zones on the right part of 
the figure are facing southwest and receive significantly higher 
solar loads than the other facades. 
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Figure 20:  Mode shape associated with a time constant of 0.93 

hours (5th order model – Floor 5) 
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Figure 21:  Mode shape of an oscillatory response, 21.8 hour 

period.  (5th order model – Floor 5) 
 
Figure 20 shows a relatively fast mode, with a time 

constant less than an hour, involving many of the offices at 
varying levels of participation.  It is unclear how to interpret 
this particular mode. 

Finally, Figure 21 shows an oscillatory mode with a period 
of response that is very close to the daily cycle.  Note that  the 
modeling process used an occupancy signal as one of the inputs, 
so this response represents a pattern seen in the data that could 
not be correlated directly to that input pattern. Therefore, we 
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consider it likely that this response is related to the variable 
solar loading experienced throughout the day. 

CONCLUSIONS AND FUTURE WORK 

This paper demonstrates an innovative approach to 
decomposing building temperature responses in an effort to 
better understand the thermal mass distribution of a structure. 
The method was demonstrated to be effective and accurate by 
using simulated data from a system whose structure is known.  
The method is also demonstrated for actual building 
temperature data from a complex multi-story, multi-zone 
commercial building.  While the resulting modal decomposition 
provided some meaningful insight, it is clear that further 
experience and development is necessary before this can be 
considered a useful and versatile tool in analyzing system 
behavior.  The areas that are being further considered are: 

 Inclusion of HVAC state data into the modeling and system 
identification processes 

 Inclusion of building construction and usage information to 
help inform the interpretation of the mode shapes 

 Apply the methodology on longer data records and 
investigate the seasonal variations and the impact of 
cooling vs. heating seasons. 

 Active experiments on the building where the system is 
allowed to coast or the temperature set points are suddenly 
changed. 

Clearly, the modal-analysis of multi-zone building temperature 
data holds promise in developing low-order linear models that 
explain significant components of building thermal behavior. 
The results also have implications and applications to optimal 
control, fault detection, and demand response. 
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